生物制药进一步发展应融合五大新技术
近年来高新技术的迅猛发展与应用,给医药研究与生产领域带来了一系列近乎革命的变化,传统的研究思想与技术已远远难以满足企业的需求,高新技术已成为日常科研、生产的常规手段。与计算机技术融合
在药物分子设计、分子结构优化等方面,应用计算机分子模拟技术和理论化学计算方法研究药物的作用机理,进而采用计算机辅助药物设计方法设计新的高效、低毒药物分子,极大地提高了科研速度与成功率。在有效化学成分的发现过程中,应用计算机辅助筛选新技术、已知结构模拟技术、立体结构对接技术、分子量能量计算、分子相互作用力预测等手段,寻找能与特定药物作用靶点有效结合的分子结构作为研究对象,使科研工作的针对性大大提高。
与生物芯片技术融合
随着人类基因组的研究进展,生物芯片技术在各领域中的应用逐渐成为可能。已有的生物芯片包括基因芯片、蛋白芯片、细胞芯片、组织芯片以及其他多种由生物材料制成的信息芯片。目前生物芯片主要应用于疾病的分析与基础研究,随着这项技术的不断成熟,在基因药物的研究、疾病预防与治疗等方面必定具有广泛的应用前景。
与组合化学合成技术融合
组合化学是采用适当的化学方法,在特定的分子母核上加入不同的基团,在同样条件下产生大量的新化合物。组合化学技术的发展为药物的发现提供了大量的化合物,扩大了药物发现的范围,提高了成功的可能性。
与纳米技术融合
纳米技术在生物医药方面的应用可概括为:纳米药物载体、生物学分析、基因工程、矫正技术。其中纳米药物载体在医药研究中的应用最为广泛,有关技术和临床应用已比较成熟。利用纳米技术将兼备生物降解性和生物相容性的聚合物制成的药物载体和微型器械,为疾病治疗、诊断、组织修复、人造器官等方面带来了新的突破。采用纳米材料或纳米磁性技术作为载体的靶向药物制剂已经在癌症的治疗中成为现实。纳米技术在生物大分子物质装配中的应用使我们可以改变细胞表面层的蛋白晶格,在疾病诊断、免疫疫苗、仿生学和分子生物学技术中有重大的应用价值。
与高通量筛选技术融合
药物发现是药物研究的基础,药物筛选就是对有可能作为药物使用的物质进行药理学和生理学的价值评价,进而发现药物。
增加筛选速度和规模是提高药物发现数量和质量的前提。高通量筛选技术结合了分子药理学、分子生物学、细胞生物学、人类基因组学和分子病理学的发展,应用分子水平和细胞水平的研究方法探讨药物的作用,增加了药物筛选的手段,使我们可以不完全依赖动物实验来评价药物。在样品用量和实验体系极大缩小的同时,大规模地进行药物筛选。
页:
[1]