TA的每日心情 | 怒 2020-6-29 17:24 |
|---|
签到天数: 20 天 连续签到: 1 天 [LV.4]偶尔看看III
|

|
动物细胞培养工艺的选择首先考虑的重要一点是该产品所涉及的生物反应器系统。选择反应器系统也就是选择产品的操作模式,操作模式选择将决定该产品工艺的产物浓度、杂质量和形式、底物转换度、添加形式、产量和成本,工艺可靠性等。与许多传统的化学工艺不同,动物细胞反应器设备占整个工艺资金总投入的主要部分(>50%),也就是说动物细胞培养工艺的选择主要部分是生物反应器系统的选择。选择反应器系统及培养工艺时,必须对工艺的整体性进行全面考虑,主要包括以下几个方面:细胞株及生长形式、产物表达量和稳定性,培养基质及代谢物,产物分离和纯化难度等。
' H* C f( K: o- X! h. ~# _
4 d* ^! C V8 W6 C2 ^4 F. N* G1 M2 I动物细胞大规模培养的生物反应器操作模式,一般分为分批式操作(batch)、流加式操作(Fed-batch)、半连续式操作(semi-continuous)、连续式操作(continuous)和灌流式操作(perfusion)五种操作模式。8 h) `/ @5 ^/ \5 G3 b3 s4 b3 V
+ I2 m6 K# L+ r* c
1. 批式操作(batch culture)
: k2 o. ?/ z( N+ C! m2 p9 Y) M% k w9 t: P% L W; C8 M, _: Z1 Q' ?2 Z/ U# o* f! C' \6 p1 Y: T
批式操作是动物细胞规模培养发展进程中较早期采用的方式,也是其它操作方式的基础。该方式采用机械搅拌式生物反应器,将细胞扩大培养后,一次性转入生物反应器内进行培养,在培养过程中其体积不变,不添加其它成分,待细胞增长和产物形成积累到适当的时间,一次性收获细胞、产物、培养基的操作方式。 + m w0 n0 y' L
7 ?, s7 [" T# F
该方式的特点1) 操作简单。培养周期短,染菌和细胞突变的风险小。反应器系统属于封闭式,培养过程中与外部环境没有物料交换,除了控制温度、pH值和通气外,不进行其他任何控制,因此操作简单,容易掌握;(2)直观的反应细胞生长代谢的过程。 由于培养期间细胞的生长代谢是在一个相对固定的营养环境,不添加任何营养成分,因此可直观的反应细胞生长代谢的过程,是动物细胞工艺基础条件或"小试"研究常用的手段;(3)可直接放大。由于培养过程工艺简单,对设备和控制的要求较低,设备的通用性强,反应器参数的放大原理和过程控制,比较其它培养系统较易理解和掌握,在工业化生产中分批式操作是传统的、常用的方法,其工业反应器(Genetech)规模可达12000L。. ]* Q6 Z; d/ C* L! W9 H2 v
' y8 ]4 }2 H( N' _# u0 n& r1 M
! N% a/ K* U$ s0 |% {: `分批培养过程中,细胞的生长分为五个阶段:延滞期、对数生长期、减速期、平稳期和衰退期,见图1。分批培养的周期时间多在3~5天,细胞生长动力学表现为细胞先经历对数生长期(48~72h)细胞密度达到最高值后,由于营养物质耗劫或代谢毒副产物的累积细胞生长进入衰退期进而死亡,表现出典型的生长周期。收获产物通常是在细胞快要死亡前或已经死亡后进行。 2 p9 t: P g9 ]8
) y) [( H" b% k+ a$ D
0 Y* ]6 O& f5 U& G图1 分批式培养动物细胞生长曲线
: X$ ~8 E$ `6 p$ `- [1 f8 M% Q$ K: R8 @# i0 G/ p
/ [/ u- u, v. w$ {' ?# u, k; j
经过改进的搅拌式生物反应器,目前仍是大规模培养动物细胞用以生产各种药物的主要设备,也是早期用以生产单抗的主要途径。在用搅拌式生物反应器分批式培养单抗中,最多采用的是微囊或巨载体培养。与一般的悬浮培养比较,杂交瘤细胞依托微囊化或巨载体后,相对固定化,降低了搅拌培养时对细胞的剪切力,提高了细胞的密度和稳定性及生产率。在1986年以前,采用此种方式培养的杂交瘤细胞就有100多种。
9 ~9 N. S2 n P/ o1 ^6 c, W! ^, }5 \: ?
2. 流加式操作(fed-batch culture)
4 u3 P0 u4 N I; U; V
7 w8 X! V7 @/ p- A7 T3 Q流加式操作是在批式操作的基础上,采用机械搅拌式生物反应器系统,悬浮培养细胞或以悬浮微载体培养贴壁细胞,细胞初始接种的培养基体积一般为终体积的1/2 ~1/3,在培养过程中根据细胞对营养物质的不断消耗和需求,流加浓缩的营养物或培养基,从而使细胞持续生长至较高的密度,目标产品达到较高的水平,整个培养过程没有流出或回收,通常在细胞进入衰亡期或衰亡期后进行终止回收整个反应体系,分离细胞和细胞碎片,浓缩、纯化目标蛋白。
' F6 d6 _! O, k/ w G: W
, d# I4 l, n7 w) p3 }流加培养主要有以下特点:) C& ~# m6 }+ g
5 R1 r) s+ B" U5 o/ N4 ^8 `. f% d6 t
1) 流加培养根据细胞生长速率、营养物消耗和代谢产物抑制情况,流加浓缩的营养培养基,流加的速率通常与消耗的速率相同,根据测得的底物浓度控制相应的流加过程,以保证合理的培养环境与较低的代谢产物抑制水平。( P" x! B* h2 }; R; m
% |5 v s$ q" O- r2) 培养过程以低稀释率流加,细胞在培养系统中停留时间较长,总细胞密度较高,产物浓度较高。
# h0 y: h1 f. _8 H5 p( y% e3) 流加培养过程须掌握细胞生长动力学,能量代谢动力学,研究细胞环境变化时的瞬间行为。流加培养细胞培养基的设计和培养条件与环境优化,是整个培养工艺中的主要内容。
% }5 }* m8 Z% w+ U9 C- e8 h$ w8 J
4) 在工业化生产,悬浮流加培养工艺参数的放大原理和过程控制,比较其它培养系统较易理解和掌握,可采用工艺参数的直接放大。
. P7 I9 E3 N# J- U8 r
7 @2 j, m* R: P流加培养工艺是当前动物细胞培养工艺中占有主流优势的培养工艺,也是近年来动物细胞大规模培养研究的热点。流加培养工艺中的关键技术是基础培养基和流加浓缩的营养培养基。通常进行流加的时间多在指数生长后期,细胞在进入衰退期之前,添加高浓度的营养物质。可以添加一次,也可添加多次,为了追求更高的细胞密度往往需要添加一次以上,直至细胞密度不再提高;可进行脉冲式添加,也可以降低的速率缓慢进行添加,但为了尽可能的维持相对稳定的营养物质环境,后者采用较多;添加的成分比较多,凡是促细胞生长的物质均可以进行添加。流加的总体原则是维持细胞生长相对稳定的培养环境,营养成分即不过剩而产生大量的代谢副产物造成营养利用效率下降而成为无效的利用;也不缺乏导致细胞生长抑制或死亡。 |
|