TA的每日心情 | 怒 2020-6-29 17:24 |
---|
签到天数: 20 天 连续签到: 1 天 [LV.4]偶尔看看III
|
楼主 |
发表于 2012-4-25 11:22:23
|
显示全部楼层
1.6 小单孢菌质粒
小单孢菌(Micromonospora)是多种重要抗生素的产生菌[51],其遗传操作主要依赖于噬菌体构建的载体[52]。Parag等[53]首先报道从西索米星(sisomicin)产生菌M.inyioensis分离到环型质粒。随后Oshida[54]报道从M.zionensis NRRL5466(西索米星产生菌)中找到高拷贝质粒pMZ1(9.9kb),从M.rosaria NRRL3718(罗沙米星产生菌)发现53.5kb质粒pMR1和11.0kb小质粒pMR2。Hasegawa等[55]利用小单孢菌的质粒复制子构建了一系列载体pMO116、pMO126、pMO133、pMO136和pMO217。Vukov等[56]利用pMZ2的复制区构建了接合转移载体pMZS25和pMZS34。
1.7 拟无枝菌酸菌质粒
拟无枝菌酸菌(Amycolatopsis)最早被划分为链霉菌属,之后归为诺卡菌属,到20世纪80年代中期,Lechecalier等[57]根据细胞壁组成缺乏以及对诺卡菌和红球菌的噬菌体不敏感等特征将其归为拟无枝菌酸菌属。拟无枝菌酸菌能产生利福霉素、万古霉素和balhimycin等在临床上重要的抗生素。拟无枝菌酸菌的遗传操作系统还不够成熟,造成对其遗传学的研究进展缓慢。许多来源于链霉菌的质粒,如pIJ702和来源于诺卡菌的质粒pCY104都不能在该菌中稳定的复制和表达。Moretti等从A.mediterranei中检测到23.7kb的质粒pMEA100,但由于容易整合到染色体上,不易分离,以及拷贝数太低,很难改造为合适的载体。Oh等[58]从糖肽类抗生素万古霉素的产生菌A.orientalis中分离到33.5kb的质粒,但是该质粒不能稳定地遗传。Lal等[59]从一株拟无枝菌酸菌中分离到一个约29.6kb的质粒pA387。其衍生载体pRL1转化到N.lactamdurans中后,自发地丢失一个片段得到质粒pULVK2。
1.8 其它稀有放线菌的质粒
马杜拉放线菌产生多种抗生素[60],但是其遗传操作体系的发展却相对落后,原因在于从马杜拉菌中发现的质粒相对较少。只有Dairi等[61]分离得到4个质粒(pAE042、pTPA0016、pTPA0019和pTPA0123),并利用pTPA0123的复制区构建了能在Actinoma?dura verrucosospora中稳定复制的克隆载体。Fare等[62]从链孢囊菌Streptosporangium brasiliense中分离到环型质粒pSgB?1,从S.viridognriseum中分离到质粒pSgV?1。Polo等[63]从延伸因子Tu抑制剂的产生菌玫瑰游动双孢菌(Planobispora rosea)中分离得到两个线型质粒pPR1(27.5kb)和pPR1(16kb)。两个质粒具有相似的序列,但它们的端粒结构有一定的差异,pPR2端粒区域的650个碱基具有类似于链霉菌端粒的倒转重复序列。
2 前景展望
稀有放线菌产生的抗生素种类占所有放线菌产抗生素的三分之一[62],随着对稀有放线菌环型与线型质粒被发现,越来越多的克隆或表达载体被构建,可以为深入研究稀有放线菌的遗传特征提供更多的帮助,也为有效利用微生物资源提供了有力的工具。
【参考文献】
[1] 刘志恒,姜成林. 放线菌现代生物学与生物技术[M]. 北京:科学出版社,2004
[2] Yao Y, Zhang W, Jiao R, et al. Efficient isolation of total RNA from antibiotic?producing bacterium Amycolatopsis mediterranei [J]. J Microbiol Methods,2002,51(2):191
[3] Sosio M, Bianchi A, Bossi E, et al. Teicoplanin biosynthesis genes in Actinoplanes teichomyceticus [J]. Antonie Van Leeuwenhoek,2000,78(3~4):379
[4] Cosma C L, Sherman D R, Ramakrishnan L. The secret lives of the pathogenic mycobacteria [J]. Annu Rev Microbiol,2003,57:641
[5] Crawford J T, Bates J H. Isolation of plasmids from mycobacteria [J]. Infect Immun,1979,24:979
[6] Jensen A G, Bennedsen J, Rosdahl V T. Plasmid profiles of Mycobacterium avium/intracellulare isolated from patients with AIDS or cervical lymphadenitis and from environmental samples [J]. Scand J Infect Dis,1989,21:645
[7] Labidi A, Dauguet C, Goh K S, et al. Plasmid profiles of Mycobacterium fortuitum complex isolates [J]. Curr Microbiol,1984,11:235
[8] Beggs M L, Crawford J T, Eisenach K D. Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7 [J]. J Bacteriol,1995,177:4836
[9] Ranes M G, Rauzier J, Lagranderie M, et al. Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a "mini" mycobacterium?Escherichia coli shuttle vector [J]. J Bacteriol,1990,172:2793
[10] Bachrach G, Colston M J, Bercovier H, et al. A new single?copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon [J]. Microbiology,2000,146:297
[11] Qin M, Taniguchi H, Mizuguchi Y. Analysis of the replication region of a mycobacterial plasmid, pMSC262 [J]. J Bacteriol,1994,176:419
[12] Meissner P S, Falkinham III J O. Plasmid?encoded Mercuric reductase in Mycobacterium scrofulaceum [J]. J Bacteriol,1984,157:669
[13] Erardi F X, Failla M L, Falkinham III J O. Plasmid?encoded copper resistance and precipitation by Mycobacterium scrofulaceum [J]. Appl Environ Microbiol,1987,53:1951
[14] Snapper S B, Melton R E, Mustafa S, et al. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis [J]. Mol Microbiol,1990,4:1911
[15] Picardeau M, Vincent V. Characterization of large linear plasmids in mycobacteria [J]. J Bacteriol,1997,179:2753
[16] Picardeau M, Vincent V. Mycobacterial linear plasmids have an invertron?like structure related to other linear replicons in actinomycetes [J]. Microbiology,1998,144:1981
[17] Kaneko H, Tanaka T, Sakaguchi K. Isolation and characterization of a plasmid from Brevibacterium lactofermentum [J]. Agric Biol Chem,1979,43:867
[18] Gross D C, Vidaver A K, Keralis M B. Indigenous plasmids from phytopathogenic Corynebacterium sp [J]. J Gen Microbiol,1979,115:479
[19] Kono M, Sasatsu M, Aoki T. R plasmid in Corynebacterium xerosis strains [J]. Antimicrob Agents Chemother,1983,23:506
[20] Martin J F, Santamaria R, Sandoval H, et al. Cloning systems in amino acid producing corynebacteria [J]. Bio Technology,1987,5:137
[21] Tauch A, Puhler A, Kalinowski J, et al. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics [J]. J Biotechnol,2003,104:27
[22] Santamaria R, Gil J A, Mesas J M, et al. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum [J]. J Gen Microbiol,1984,130:2237
[23] Katsumata R, Ozaki A, Kon T, et al. Protoplast transformation of glutamate producing bacteria with DNA [J]. J Bacteriol,1984,159:306
[24] Santamaria R, Gil J A, Mesas J M. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum [J]. J Gen Microbiol,1984,130:2237
[25] Takagi H, Morinaga Y, Miwa K, et al. Versatile cloning vectors constructed with genes indigenous to glutamic acid producer Brevibacterium lactofermentum [J]. Agric Biol Chem,1986,50:2597
[26] Liebl W, Sinskey A J, Schleifer K. Expression, secretion and processing of staphylococcal nuclease by Coryne?bacterium glutamicum [J]. J Bacteriol,1992,171:1854
[27] Billman?Jacobe H, Hodgson A L M, Lightowlers M, et al. Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum [J]. Appl Environ Microbiol,1994,60:1641
[28] Kirby R, Usdin K. The isolation and restriction mapping of a miniplasmid from the Actinomycete Nocardia coralline [J]. FEMS Microbiol Lett,1985,27:57
[29] Enguita F J, Fuente J L de la, Martín J F, et al. An inducible expression system of histidine?tagged proteins in Streptomyces lividans for one?step purification by Ni2+ affinity chromatography [J]. FEMS Microbiol Lett,1996,137:135
[30] Madon J, Hutter R. Transformation system for Amycolatopsis (Nocardia) mediterranei: direct transformation of mycelium with plasmid DNA [J]. J Bacteriol,1991,173:6325
[31] Liu Y T, Su C M, Lee C H, et al. Cloning and characterization of the replicon of the Nocardia italica plasmid, pNI100 [J]. Plasmid,2000,43:223
[32] Kalkus J, Reh M, Schlegel H G. Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids [J]. J Gen Microbiol,1990,136:1145
[33] Straube G, Hensel J, Niedan C, et al. Kinetic studies of phenol degradation by Rhodococcus sp. P1. 1. Batch cultivation. Antonie van Leeuwenhoek [J]. J Microbiol Serol,1990,57:29
[34] Ferguson J A, Korte F. Epoxidation of aldrin to exo?dieldrin by soil bacteria [J]. Appl Environ Microbiol,1981,34:7
[35] Behki R, Topp E, Dick W, et al. Metabolism of the herbicide Atrazine by Rhodococcus strains [J]. Appl Environ Microbiol,1993,59:1955
[36] Kobayashi M, Nagasawa T, Yamada H. Enzymatic synthesis of acrylamide: a success story not yet over [J]. Trends Biotechnol,1992,10:402
[37] Sallis P J, S. Armfield J, Bull A, et al. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2 [J]. J Gen Microbiol,1990,136:115
[38] Nakashima N, Tamura T. A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35 degrees C [J]. Biotechnol Bioeng,2004,86:136
[39] Nakashima N, Tamura T. Isolation and characterization of a rolling?circle?type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple?recombinant?protein expression [J]. Appl Environ Microbiol,2004,70:5557
[40] van der Geize R, Dijkhuizen L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications [J]. Curr Opin Microbiol,2004,7:255
[41] Shimizu S, Kobayashi H, Masai E, et al. Characterization of the 450?kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1 [J]. Appl Environ Microbiol,2001,67:2021
[42] Stecker C, Johann A, Herzberg C, et al. Complete nucleotide sequence and genetic organization of the 210?kilobase linear plasmid of Rhodococcus erythropolis BD2 [J]. J Bacteriol,2003,185:5269
[43] Denis?Larose C, Labbe D, Bergeron H, et al. Conservation of plasmid?encodeddibenzothiophene desulfurization genes in several rhodococci [J]. Appl EnvironMicrobiol,1997,63:2915
[44] Kim D, Kim Y S, Kim S K, et al. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17 [J]. Appl Environ Microbiol,2002,68:3270
[45] Dobritsa S V. Extrachromosomal circular DNA in endosymbiont vesicles from Alnus glutinosa root nodules [J]. FEMS Microbiol Lett,1982,15:87
[46] Normand P, Simonet P, Butour J L, et al. Plasmids in Frankia sp. [J]. J Bacteriol,1983,155:32
[47] Simonet P, Normand P, Moiroud A, et al. Restriction enzyme digestion patterns of Frankia plasmids [J]. Plant Soil,1985,87:49
[48] Lavire C, Louis D, Perriere G, et al. Analysis of pFQ31, a 8551?bp cryptic plasmid from the symbiotic nitrogen?fixing actinomycete Frankia [J]. FEMS Microbiol Lett,2001,197:111
[49] Xu X, Kong R, de Bruijn F J, et al. Sequence and characterization of plasmid pFQ11 and glutmine synthetase gene glnA from Frankia spp. [A]. 11th International Meeting on Frankia and Actinorhizal plants. Carry?le?Rouet, France,2001
[50] John T R, Rice J M, Johnson J D. Analysis of pFQ12; a 22.4kb Frankia plasmid [J]. Can J Microbiol,2001,47:1
[51] Wagman G H, Weinstein M J. Antibiotic from Micro?monospora [J]. Annu Rev Microbiol,1980,34:537
[52] Li X, Zhou X, Deng Z. Isolation and characterization of Micromonospora phage PhiHAU8 and development into a phasmid [J]. Appl Environ Microbiol,2004,70:3893
[53] Parag Y, Goedeke M E. A plasmid of the sisomicin producer Micromonospora inyoensis [J]. J Antibiot (Tokyo),1984,37:1082
[54] Oshida T, Takeda K, Yamaguchi T, et al. Isolation and characterization of plasmids from Micromonospora zionensis and Micromonospora rosaria [J]. Plasmid,1986,16:74
[55] Hasegawa M, Dairi T, Ohta T, et al. A novel highly efficient gene?cloning system for Micromonospora strains [J]. J Bacteriol,1991,173:7004
[56] Vukov N, Vasiljevic B. Analysis of plasmid pMZ1 from Micromonospora zionensis [J]. FEMS Microbiol Lett,1998,162:317
[57] Lechevalier M P, Prauser H, Labda D P, et al. Two new genera of nocardioforma actinomycetes: Amycolata gen nov. and Amycolatopsis gen nov. [J]. Int J Syst Bac?teriol,1986,36:29
[58] Oh Y K, Fare L R, Taylor D P, et al. A cryptic plasmid from Nocardia orientalis NRRL 2452, a vancomycin producer [J]. J Antibiot (Tokyo),1986,39:694
[59] Lal R, Khanna M, Kaur H, et al. Rifamycins: strain improvement program [J]. Crit Rev Microbiol,1995,21:19
[60] Miyadoh S. Research on antibiotic screening in Japan over the Last decade: a producing microorganism approach [J]. Actinomycetologica,1993,7:100
[61] Dairi T, Hamano Y, Furumai T, et al. Development of a self?cloning system for Actinomadura verrucosospora and identification of polyketide synthase genes essential for production of the angucyclic antibiotic pradimicin [J]. Appl Environ Microbiol,1999,65:2703
[62] Fare L R, Taylor D P, Toth M J, et al. Physical characterization of plasmids isolated from Streptosporangium [J]. Plasmid,1983,9:240
[63] Polo S, Guerini O, Sosio M, et al. Identification of two Linear plasmids in the actinomycete Planobispora rosea [J]. Microbiology,1998,144:2819 |
|